
West University of Timişoara
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1 Introduction

Evolutionary algorithms (EAs), inspired by natural evolutionary processes, are pow-
erful optimization techniques. Among them, Differential Evolution (DE) has proven
effective for continuous optimization problems across various domains (Qing 2009;
Chen et al. 2017) since its introduction by Storn and Price (Storn and Price 1997).
Despite extensive research on DE’s strategies and properties (Peng et al. 2017; Tian
and Gao 2018; Mousavirad and Rahnamayan 2020; Tanabe and Fukunaga 2013; Tan-
abe and Fukunaga 2014; Stanovov et al. 2018; Dasgupta et al. 2009; Rudolph 1999),
a critical aspect, Bound Constraint Handling Methods (BCHMs), has been largely
overlooked. BCHMs are essential for managing solutions that violate search space
boundaries, a common occurrence in DE due to the randomness in mutation and
crossover (Arabas et al. 2010; Kononova et al. 2022). How these violations are han-
dled significantly impacts search dynamics, diversity, and convergence. This thesis
addresses this gap by systematically investigating the role and impact of BCHMs
in DE, treating them not just as implementation details but as active algorithmic
components.

The main objectives of the thesis are:

• Develop a theoretical framework analyzing how BCHMs influence DE properties
such as search direction, bound violation probability, and population variance.

• To design and evaluate adaptive BCHM strategies that dynamically select ap-
propriate methods to enhance DE performance.

• Establish a geometric monitoring framework for characterizing DE population
dynamics and BCHM effects, using axis-aligned and PCA-based measures.

• To assess BCHM impact in a real-world context: neural network hyperparam-
eter optimization.

This research aims to elevate the status of BCHMs to recognized components requir-
ing careful design and adaptation. The research is guided by four main groups of
questions:

• RQ A: How do BCHMs influence DE’s theoretical properties and empirical be-
havior (search direction, violation probability, population distribution)? The
question is addressed in Chapter 3 where it is further divided in four more
specific questions: (RQ A1): How does the choice of BCHM theoretically in-
fluence the probability of generating infeasible solutions? (RQ A2): To what
extent do different BCHMs preserve or alter the search direction intended by the
DE mutation operator?; (RQ A3): How accurately do the theoretical models
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for bound violation probability predict the empirically observed probabilities?;
(RQ A4): How does the actual population distribution deviate from the orig-
inal uniformly initialized population?

• RQ B: Can adaptive BCHM strategies improve DE performance, and how
should they be designed (selection pool composition, selection mechanisms)?
Chapter 4 addresses the main question by decomposing it into three more fo-
cused research inquiries: (RQ B1): Which BCHMs should be included in the
adaptive pool to ensure complementary strengths while avoiding redundancy?
(RQ B2): How can the selection process be designed to effectively choose
appropriate methods during different optimization phases? (RQ B3): What
measures should guide the adaptation process to ensure both short-term effec-
tiveness and long-term optimization success?

• RQ C: How can DE population spatial and geometric dynamics be character-
ized, and how do BCHMs affect them? Chapter 5 provides a detailed exami-
nation of this question by addressing four more specific aspects of the problem:
(RQ C1): How can we effectively characterize the spatial distribution of DE
populations during the optimization process? (RQ C2): How do different
BCHMs influence the geometric characteristics of the population?; (RQ C3):
hat correlations exist between population-related measures and algorithm per-
formance?; (RQ C4): What insights on the population dynamics can be ex-
tracted by the proposed analysis, and how can they be used to guide the selec-
tion of appropriate BCHMs for specific optimization scenarios.

• RQ D: What is the impact of BCHMs on DE’s effectiveness in a real-world
problem, e.g. hyperparameter optimization? Chapter 6 tackles this ques-
tion by structuring the investigation around five more granular research ques-
tions: (RQ D1): How do different BCHMs influence the final solution qual-
ity (measured by validation loss, accuracy, regret) achieved by DEHB during
the optimization of neural network hyperparameters on real-world classification
datasets? (RQ D2): What is the relationship between the employed correction
strategy and the frequency of boundary violations necessitating repair, as quan-
tified by the Probability of Repair (PORS)? (RQ D3): Is there an observable
trade-off between performance effectiveness (solution quality) and repair fre-
quency (PORS) associated with different correction strategies within the DEHB
framework? (RQ D4): Do correction strategies incorporating population-
derived information demonstrate discernible performance advantages over sim-
pler, non-adaptive strategies for hyper-parameter optimization utilizing DEHB?
(RQ D5): How consistent is the relative performance ranking of the evaluated
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correction strategies across the diverse set of classification datasets under inves-
tigation?

2 Main Results

This section summarizes the main results included in this thesis.

2.1 Particularities of Bound Constraints and Correction Meth-
ods (Chapter 3)

Chapter 3 is based on the published papers (Mitran 2021; Mitran 2023; Kononova et
al. 2024) and provides a systematic analysis of BCHMs, moving beyond treating them
as mere implementation details. It established that the choice of BCHM significantly
impacts key DE behaviors. The results can be grouped in two categories:

• Theoretical Influence (RQ A1, RQ A2): Mathematical models were de-
veloped to analyze how different BCHMs affect the probability of subsequent
bound violations (e.g., for Saturation and Exponentially Confined strategies),
the preservation of the intended search direction (showing that the Saturation
and Mirroring strategies can preserve the search direction better than Toroidal
under certain conditions), and population variance (suggesting different impacts
on diversity).

• Empirical Validation (RQ A3, RQ A4): Experiments largely validated
the theoretical findings, especially regarding search direction preservation (mea-
sured by cosine similarity, confirming Saturation’s high preservation and Toroidal’s
disruption). The accuracy of the bound violation probability model for Expo-
nentially Confined strategies was confirmed under specific conditions (e.g. the
reference position is R=0.5, and no selection pressure) but showed limitations
otherwise. Population distribution analysis using the Kullback-Leibler diver-
gence, quantified the deviations from uniformity, showing that while the uni-
formity assumption holds in the early evolution stage, it becomes less accurate
later, especially with disruptive BCHMs.

Overall, this chapter demonstrated that BCHMs are active components with distinct
theoretical properties and empirically verifiable impacts on DE dynamics.

2.2 Adaptive Strategies for Bound Constraints (Chapter 4)

Chapter 4, based on papers (Mitran et al. 2023; Mitran 2024b), addressed the need
for adaptive BCHM strategies, given that no single method is universally optimal.
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• Selection Pool Design (RQ B1): A method for constructing diverse pools
was developed by characterizing BCHMs based on multiple behavioral aspects
(bound violation patterns, diversity impact, convergence behavior) and using
hierarchical clustering to identify complementary methods. This ensures that
the pool covers different search dynamics.

• Selection Strategies (RQ B2): Building upon existing work, adaptive selec-
tion mechanisms were designed. A linear combination approach with an inertia
coefficient and a more robust method based on modeling success probabilities
with the Beta distribution were proposed and evaluated. The Beta distribu-
tion approach showed better performance on some functions from the BBOB
testsuite. Phase-dependent effectiveness patterns, as depicted from figures 1, 2
suggested potential benefits for explicitly phase-aware adaptation.

• Guiding Adaptation (RQ B3): While success rates offer short-term guid-
ance, the analysis suggested that long-term success might require incorporating
measures like population diversity and convergence progress, potentially in-
formed by phase detection using error-variance divergence analysis illustrated
in figure 3.

This chapter established the rationale for adaptive BCHMs and provided method-
ologies for designing effective pools and robust, potentially phase-aware, selection
mechanisms.

2.3 Monitoring Population Dynamics (Chapter 5)

Chapter 5, based on paper (Mitran 2024a) introduced a novel framework for monitor-
ing DE population dynamics, focusing on geometric characteristics and the influence
of BCHMs.

• Geometric Monitoring Framework (RQ C1): A multi-faceted framework
was developed, combining traditional statistical measures with axis-aligned Pop-
ulation Bounding Box (PBB) measures (extension, shape, eccentricity) and
novel PCA-based geometric measures (PCA-shape, PCA-eccentricity, PCA-
density, PCA-variance structure) to provide a comprehensive view of the pop-
ulation’s spatial distribution, illustrated in figures 4 and 5.

• Value of PCA Measures: PCA-based measures proved essential for revealing
the population’s intrinsic structure (shape, orientation, density) independent of
axis alignment, capturing details missed by PBB or statistical measures alone.
They helped distinguish intrinsic elongation from axis-aligned stretching and
true coalescence from mere contraction.
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Figure 1: Selection probabilities and success rates on function f4 of BBOB. The
vertical lines split the optimization process into early, middle, and late phases.
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Figure 2: Selection probabilities and success rates on f19of BBOB. The vertical lines
split the optimization process into early, middle, and late phases.
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Figure 3: Overview of the error-variance-based phase detection methodology. Panel
1: Raw error and variance. Panel 2: Measures min-max scaled to [0, 1]. Panel 3:
Generation-wise changes in scaled measures. Panel 4: Divergence measure dt and its
statistical thresholds (Q1, Q3). Panel 5: Identified Early, Middle, and Late evolution-
ary phases. Phase transitions are determined by the divergence curve crossing these
thresholds.
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Figure 4: Visualization of PBB (red box), for a population (blue points) distributed
inside the feasible domain [−5, 5]2, with population mean (red X), PBB center (green
circle) and eccentricity line (dashed black). The eccentricity (0.13) reflects the asym-
metric distribution within the PBB, and the high shape value (0.933) indicates that
the PBB is almost a perfect square.
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Figure 5: Visualization of an elongated population distribution with both axis-aligned
and variance-aligned geometric characterizations. The PBB (red solid rectangle)
provides axis-aligned boundary representation, while the PCA Box (green dashed
polygon) aligns with the principal directions of variation. Principal components are
displayed as arrows originating from the population mean (red X), with PC1 (blue)
explaining 95.1% of total variance and PC2 (orange) explaining the remaining 4.83%.
The comparison illustrates how PCA-based geometric measures better capture the
intrinsic shape of anisotropic distributions.
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• BCHM Influence on Geometry (RQ C2): Experiments showed that the
BCHMs actively shape population geometry. Vector-based methods induced
distinct dynamics compared to component-wise methods. Discrepancies be-
tween PBB and PCA measures highlighted BCHM-specific impacts on orienta-
tion and internal structure.

• Correlations and Insights (RQ C3, RQ C4): Strong correlations were
confirmed between error and fundamental convergence indicators (contraction,
densification, diversity loss). Relationships involving shape, symmetry, internal
distribution (KL divergence), and control parameters were more complex and
context-dependent. PCA measures provided deeper insights, for example, show-
ing variance concentration in fewer effective dimensions during convergence.
The framework offers diagnostic potential for practitioners.

This chapter established the utility of geometric monitoring, particularly with PCA,
for a nuanced understanding of DE dynamics and BCHM effects.

2.4 Impact of Correction Strategies on Constrained Opti-
mization Real-World Problems (Chapter 6)

Chapter 6 investigated the impact of BCHMs in a practical application: hyperpa-
rameter optimization (HPO) for neural networks using the DEHB (Awad et al. 2021)
algorithm.

• HPO Performance (RQ D1): BCHM choice significantly affected DEHB
performance. Strategies using the best-so-far solution (expCB, vectB, midB) and
the mir strategy generally outperformed simpler methods like sat and midT in
terms of validation loss and accuracy. sat consistently performed poorly.

• Repair Frequency (PORS) (RQ D2, RQ D3): There was an inverse re-
lationship between performance and the probability of repair (PORS). The
method with the lowest PORS (midT) performed poorly, while several top per-
formers had higher PORS values. This suggests that minimizing repairs is not
the primary goal; effective exploration might involve transient violations han-
dled well by the BCHM.

• Value of Population Information (RQ D4): Incorporating best-so-far in-
formation (e.g., expCB, vectB, midB) consistently led to better results than those
using target vector information (expCT, vectT, midT) or non-adaptive strategies,
highlighting the benefit of guiding correction towards promising regions.
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• Consistency Across Datasets (RQ D5): While general trends held (e.g.,
’Best’-based methods are robust, while sat behaves rather poorly), the exact
ranking of top methods varied across datasets, indicating some problem depen-
dency. However, expCB and vectB consistently ranked well, suggesting they are
reasonable default choices.

This case study confirmed the practical significance of BCHM selection in HPO and
validated the effectiveness of information-guided correction strategies.

3 Conclusions and Future Work

This thesis demonstrated that Bound Constraint Handling Methods (BCHMs) are
critical components of Differential Evolution (DE), significantly influencing theoreti-
cal properties, empirical behavior, population geometry, and real-world performance.
Key contributions include a systematic analysis of BCHM properties, a novel geomet-
ric monitoring framework using PBB and PCA measures, the design and evaluation
of adaptive BCHM strategies, and validation of BCHM impact in Hyperparameter
Optimization.

The research challenges the practice of arbitrary BCHM selection and provides
tools (geometric monitoring, adaptive frameworks) for a more informed design. The
PCA-based geometric measures offer deeper insights into population structure and
dynamics than previously available. The HPO study highlighted the practical con-
sequences and the benefit of information-guided corrections, while also cautioning
against simply minimizing boundary violations.

Limitations include reliance on simplifying assumptions in the theoretical models
and the usage of only some specific algorithms/benchmarks in the empirical studies.

Future work could involve:

• Refine theoretical models for non-uniform distributions and when the selection
pressure is taken into account.

• Broader empirical studies across more DE variants, problems (constrained,
multi-objective, large-scale), and other metaheuristic algorithms.

• Developing advanced adaptive mechanisms (self-adaptation, phase-awareness,
geometry-informed feedback).

• Using geometric measures for online algorithm control (adapting diversity, mu-
tation, population size).

• Investigating BCHMs in other real-world applications.
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