Fișa de verificare

Numele și prenumele candidatului: Lobiuc Andrei

Nr. crt.	Denumire standard conform Ordinului MEN nr. 6129/2016	Documentele care dovedesc îndeplinirea standardelor	Dovada (Anexa la prezentul document)
	1. Calificarea profesionala: Titlul de Doctor in domeniul abilitarii	Diploma doctor in Biologie, seria H1, nr 0018595 Nr. 741/15.04.2014 Indeplinit	Anexa 1
A. Condiții	2. Articole stiintifice ca autor principal: Minimum 4 articole in reviste cotate ISI cu AIS cumulat mai mare sau egal cu 4, din care 2 articole cu AIS de cel putin 0,3 in ultimii 5 ani	47 Articole total, AIS cumulat 24,37 23 articole cu AIS de cel putin 0,3 in ultimii 5 ani Indeplinit	Anexa 2, Anexa 3
preliminare	3. Coordonare proiecte de cercetare obtinute prin competitie nationala sau internationala: Minim 2 granturi nationale de cercetare in calitate de director (sau responsabil de proiect in cazul parteneriatelor)	 Director proiect, Cultivare controlata cu ajutorul luminii a germenilor si microgreens vegetali cu continut fenolic ridicat – PHENOLIGHT, cod proiect PN-III-P2-2.1-PED-2021-4380 Responsabil proiect partener, Secvențierea genomului SARS-CoV-2 și analiza filogenetică a tulpinilor circulante în România, contract de finantare nr. 12Sol/2020. Indeplinit 	Anexa 4
B. Criterii si standarde minimale	Recunoastere internationala (Suma punctele 1-2): Punctaj minimal 150 puncte	Punctaj realizat 1218.58 puncte > 150 Format din 607.54 puncte - articole in reviste cotate ISI, ca autor principal + 611.03 puncte Articole in reviste cotate ISI, ca si contributor Indeplinit	Anexa 5
	Performanta totala (suma punctele 1-15): Punctaj minimal 250 puncte	Punctaj realizat 1249.06 > 250 Indeplinit	Anexa 5

TOTAL PUNCTAJ: 1249.06 puncte

Întocmit, Nume, prenume și semnătură candidat Lobiuc Andrei

Data,

05 05 2025

Anexa 2 – Dovada Minimum 4 articole in reviste cotate ISI cu AIS cumulat mai mare sau egal cu 4

Teliban GC: Paval NE: Mihalacha G: Burducca M. Carlam VV 1 11	AIS
Processes in Phenolic Compounds Production in Ocimum basilicum L. Microgreens, (2025), 10.3390/horticulturae11010056 Constantinescu-Bercu A: Lobing A: Caliman Stundary Oct. Oct. Oct. Oct. Oct. Oct. Oct. Oct.	0.382
	1.053
Compounds in Ocimum basilicum L., (2024), 10.3390/ijms25010448	1.053
Gastrointestinal Fluids, (2024), 10.3390/biomimetics9110716	0.567
lateu, OC: Lobiuc , A. Covasa, M. Micronitriant Potegonal Inflammation-Induced Colorectal Cancer, (2024), 10.3390/ijms25169026	1.053
Gheornhita R. Soldanescu, 1.1 china, b. St., etc., etc	0.263
unknowns of long COVID-19: from mechanisms to therapeutical approaches, (2024), 10.3389/fimmu.2024.1344086 Gheorahita. RE: Lupaescu. AV: Gatlan. AM: Dakiia. B: 1.54:0.00.00.00.00.00.00.00.00.00.00.00.00.0	1.69
Applications in the Food Industry: Capsules with Berry Juice for Functional Food Products, (2024), 10.3390/gels10010071 Popa. LD: Teliban GC: Buterchi I: Burduces M. Patriciosis CF: No. 10.3390/gels10010071	0.595
Stoleru, V, PHYSIOLOGICAL, BIOCHEMICAL AND AGROPRODUCTIVE CHARACTERISTICS OF HEMP MICROGREENS IN DIFFERENT GROWING ENVIRONMENTS, (2024),	0.022
Lobiuc, A, Paval, NE; Dimian, M; Covasa, M; Ibrahim, SA, Nanopore Sequencing Assessment of Bacterial Pathogens and Associated Antibiotic Resistance Genes in Environmental Samples, (2023), 10.3390/microorganisms11122834	0.867
10.3390/biomedicines 10.00 National Molecules Using Nanopore Sensing Techniques, (2023),	0.808
Eubluc, A, Paval, NE; Mangalagiu, II; Gheorghita, R; Teliban, GC; Amariucai-Mantu, D; Stoleru, V, Future Antimicrobials: Natural and Functionalized Phenolics, (2023), 10.3390/molecules28031114	0.676
QUINOA MICROGREENS AS A POTENTIAL BIOTECHNOLOGICAL TOOL, (2023),	0.05
	0.509
and protocols, 10.3889/fmed.2022.1060581 Proceed: Bo: Loting A. Caller, 10.3889/fmed.2022.1060581	0.936
Puscaselu, NG, Lobiuc , A, Sirbu, IO, Covasa, M, The Use of Biopolymers as a Natural Matrix for Incorporation of Essential Oils of Medicinal Plants, (2022), 10.3390/gels8110756	0.626
Materials with Essential Oils Added, (2022), 10.3390/gels8080505	0.626
Barbacariu, CA, Assessment of the Fertilization Capacity of the Aquaculture Sediment for Wheat Grass as Sustainable Alternative Use, (2022),	0.621

	0.083	/-2	7.	ntation 0.459	pe 0.597	TIAL 0.162	rom 0.444	d 0.721	ic 0.599	ation 0.74	f Red 0.468			0.182	on the 0	tion 0.467		C80.U	
10.3390/plants11050634	COMPOUNDS AND THE ANTIOXIDANT ACTIVITY OF BASIL EXTRACTS FOR PHYTOPHARMACOLOGICAL PURPOSES, (2022), 16	Lobiuc, A; Sterbuleac, D; Sturdza, O; Dimian, M; Covasa, M, A Conservative Replacement in the Transmembrane Domain of SARS-CoV-2 ORF7a as a Putative Risk Factor in COVID-19 (2021) 10 3300/biology 401316	Lobiuc, A; Dimian, M; Gheorghita, R; Sturdza, OAC; Covasa, M, Introduction and Characteristics of SARS-CoV-2 in North-East of Romania During the First COVID-19 Outbreak, (2021), 10.3389/fmicb.2021.654417	vith Wheat Grass Juice on Growth Performance, Body Composition and Blood Biochemical Profile of Carp (Cyprinus carpio L.), (2021),		Massaoudi Y. Anicci H. Carrollo OF Under SM; Costica, N; Zamfirache, MM, LUDWIGIA GLANDULOSA (WALTER, 1788) AS A POTENTIAL Massaoudi Y: Anicci H. Carrollo OF WATER QUALITY, (2020), 10.26471/cjees/2020/015/137	Pseudomonas zhaodongensis and Bacillus stratosphericus against Memory Deficits and Anxiety- and Depression-Like Behaviors in Methionine- Induced Schizophrenia in Mice Focusing on Oxidative Strates Status. (2020). 10.1155/2020/8852418.	Aelenel, P.; Kimbu, CM; Horhogea, CE; Lobiuc , A; Neagu, AN; Dunca, SI; Motrescu, I; Dimitriu, G; Aprotosoaie, AC; Miron, A, Prenylated phenolics as promising candidates for combination antibacterial therapy: Morusin and kuwanon G, (2020), 10.1016/J.jsps.2020.08.006 Puscaselu, RG: I ohilir, A: Dimish, M. Conco, M. A. Conco, M. Conco,	Disorders, (2020), 10.3390/polym12102417	from lasi City, Romania, (2020), 10.1007/s12520-020-01159-2	ו Sulveru, V; Burducea, M; Lobiuc , A; Munteanu, N; Popa, LD; Caruso, G, Biochemical, Physiological and Yield Characteristics of Red Basil as Affected by Cultivar and Fertilization. (2020). 10 3390/מתוכנו וויים אל אל Sultivar and Fertilization. (2020). 10 3390/מתוכנו וויים אל Sultivar and Fertilization. (2020). 10 3390/מתוכנו וויים אל Sultivar and Fertilization.	Vocnita, G; Oprica, L; Gherghel, D; Mihai, CT; Boukherroub, R; Lobiuc , A, Graphene oxide effects in early ontogenetic stages of Triticum aestivum	Almeida, J; Fortuna, ME; Pricop, L; Lobiuc, A; Leite, A; Silva, AMN; Monteiro, RP; Rangel, M; Harabagiu, V; Silva, AMG, (Aminophenyl)porphyrins	Burducea, M; Lobiuc, A; Asandulesa, M; Zaltariov, MF; Burducea, I: Ponescu, SM: Zhaliazkov, VD, Efforts of Sunday SM: Surducea, I: Ponescu, SM: Zhaliazkov, VD, Efforts of Sunday SM: Surducea I: Ponescu, SM: Zhaliazkov, VD, Efforts of Sunday SM: Surducea I: Ponescu, SM: Zhaliazkov, VD, Efforts of Sunday SM: Surducea I: Ponescu, SM: Zhaliazkov, VD, Efforts of Sunday SM: SM: SM: SM: Zhaliazkov, VD, Efforts of SM: SM: SM: Zhaliazkov, VD, Efforts of SM: Zhaliazkov, VD, Zhalia	Growth and Physiology of Sweet Basil, (2019), 10.3390/agronomy9090548 Burducea M. Zhaliazkov VD: 1 ching A. Bistil, 2019, 10.3390/agronomy9090548	improves mineral composition and phenolic profile of basil cultivated on eroded soil (2019) 10 1046/i scienta 2010 00 000	Cojocaru, FD; Balan, V; Popa, MI; Lobiuc , A; Antoniac, IV; Verestiuc, L, Biopolymers - Calcium phosphates composites with inclusions of magnetic nanonarticles for box discussed in the composition of magnetic nanonarticles for box discussed in the composition of magnetic nanonarticles for box discussed in the composition of magnetic nanonarticles for box discussed in the composition of the	Ciornea, ET; Grosu, E; Bucur, DE; Lobiuc, A, Biochemical and Physiological Effects of Some Organic and Ingressing Chemical Acceptate in	Adents In a suite of gallic of galli

0.978	0.052	0.701	0.435	0.631	0.698	0.065	0.151	0.166	0.191	0.102	24.374
Fortuna, ME; Vasilache, V; Ignat, M; Silion, M; Vicol, T; Patras, X; Miron, I; Lobiuc , A, Elemental and macromolecular modifications in Triticum aestivum L. plantlets under different cultivation conditions, (2018), 10.1371/journal.pone.0202441			Onorrel, V; Benchennout, A; Jancheva, M; Loupassaki, S; Ouaret, W; Burducea, M; Lobiuc , A; Teliban, GC; Robu, T, Ecological foliar fertilization effects on essential oil composition of sweet basil (Ocimum basilicum L.) cultivated in a field system, (2018), 10.1016/j.scienta.2018.05.021	Econoc, A, vasilacile, V, Pintille, U, Stoleru, I; Burducea, M; Oroian, M; Zamfirache, MM, Blue and Red LED Illumination Improves Growth and Bioactive Compounds Contents in Acyanic and Cyanic Ocimum basilicum L. Microgreens, (2017), 10.3390/molecules22122111	Calendula officinalis L., (2017), 10.1016/j.indcrop.2017.08.055	Ardelean, M; Cacnita-Cosma, D; Ardelean, A; Ladasiu, FC; Lobiuc, A; Zamfirache, MM; Rosenhech, E, Cytological aspects and anthocyanin accumulation observed in Sedum telephium ssp maximum L. callus, (2017),	Boz, I; Lobiuc, A; Tanase, C, CHEMICAL COMPOSITION OF ESSENTIAL OILS AND SECRETORY HAIRS OF THYMUS DACICUS BORBAS RELATED TO HARVESTING TIME, (2017),	Onofrei, V, Burducea, M; Lobiuc, A; Teliban, GC; Ranghiuc, G; Robu, T, INFLUENCE OF ORGANIC FOLIAR FERTILIZATION ON ANTIOXIDANT ACTIVITY AND CONTENT OF POLYPHENOLS IN OCIMUM BASILICUM L., (2017),	Lobiuc, U; Lobiuc, A, Microstructural investigations of wing scales of three Cupido Schrank (Lepidoptera: Lycaenidae: Polyommatinae) species, (2015),	Lobiuc, A; Olteanu, Z; Stratu, A; Cojocaru, D; Zamfirache, MM, THE EFFECT OF SOME ANGELICA L. SP HYDROSOLS ON SEED GERMINATION AND INITIAL PLANT GROWTH, (2014),	Total

Anexa 3 – Dovada 2 articole cu AIS de cel putin 0,3 in ultimii 5 ani

Nr. crt.		
7	Talibar OO B. 1117 1117 Lucrare	AIS
<u>·</u>	Teliban, GC; Paval, NE; Mihalache, G; Burducea, M; Stoleru, V; Lobiuc , A, Modulated Light Elicitation and Associated Physiological and Molecular Processes in Phenolic Compounds Production in Ocimium hasilicium Micrograms (2025) 10 3300/hosticum.in. 1000 and	0
2	Constantinescu-Bercu, A; Lobiuc, A; Caliman-Sturdza, OA; Oita RC; Isavorschi, M; Pavorschi, NC; Soldansch, I) Dimian, M; Covasa, M; Long COVID: Molecular Mechanisms and Detection Tochericus, 2004, 2	0.382
က်	Lobiuc, A; Stoleru, V; Gheorghita, R; Burducea, M, The Effect of Municipal Biosolides on the Growth, Physiology and Synthesis of	1.053
4.	Gheorghita, R; Sirbu, IO; Lobiuc, A; Covasa, M, Sodium Alginate-Starch Capsules for Enhanced Stability of Metformin in Simulated	1.053
5.	GastroIntestinal Fluids, (2024), 10.3390/biomimetics9110716 Hamamah, S; Lobiuc , A; Covasa, M. Antioxidant Role of Probiotics in Inflammation-Induced Coloradal Consort (2024)	0.567
œ	Gheorahita D. Soldanson, 1.1 okim, A. Ottal. 1	1.053
o	knowns and unknowns of long COVID-19: from mechanisms to therapeutical approaches. (2024), 10.3389/fimmi, 2024 1344086	1 60
7.	Gheorghita, RE; Lupaescu, AV; Gatlan, AM; Dabija, D; Lobiuc , A; latcu, OC; Buculei, A; Andriesi, A; Biopolymers-Based Macrogels with Applications in the Food Industry. Cancules with Rerry Tripe for Emerican English As Decided Food Industry.	0
œί	Lobiuc, A; Paval, NE; Dimian, M; Covasa, M; Ibrahim, SA, Nanopore Sequencing Assessment of Bacterial Pathogens and Associated Antibiotic Resistance Genes in Environmental Segments (2002), 40, 2000.	0.595
6		0.867
10	I ohine A Paval NE Mangalagii II: Changhita D: Taillag Con A san an a	0.808
7	Functionalized Phenolics, (2023), 10.3390/molecules28031114	0.676
=	Ungureanu, E; Fortuna, ME; Topa, D; Lobiuc, A; Ungureanu, OC; Jitareanu, DC, Design of Functional Polymer Systems to Optimize the Filler Retention in Obtaining Cellulosic Substrates with Improved Properties, (2023), 10 3390/ma16051904	0 500
15.	Hamamah, S; Gheorghita, R; Lobiuc , A; Sirbu, IO; Covasa, M, Fecal microbiota transplantation in non-communicable diseases: Recent advances and protocols (2002) 10 3380/mad 2003 1050584	
13.	Puscaselu, RG; Lobiuc, A; Sirbu, IO; Covasa, M, The Use of Biopolymers as a Natural Matrix for Incorporation of Essential Oils of	0.936
14	Physiaselli RG: Lobins A: Citt Citt Citt Citt Citt Citt Citt Cit	0.626
	Biobased Materials with Essential Oils Added, (2022), 10.3390/gels8080505	0.626
<u></u>	Burducea, M; Lobiuc , A; Dirvariu, L; Oprea, E; Olaru, SM; Teliban, GC; Stoleru, V; Poghirc, VA; Cara, IG; Filip, M; Rusu, M; Zheljazkov, VD; Barbacariu, CA, Assessment of the Fertilization Capacity of the Aquaculture Sediment for Wheat Grass as Sustainable Alternative	
16.	Lobiuc, A; Dimian, M; Gheorghita, R; Sturdza, OAC; Covasa, M, Introduction and Characteristics of SARS-CoV-2 in North-East of Romania During the First COVID-19 Outbreak (2021) 10 3380/fmich 2021 651117	1.621
17.	Barbacariu, CA; Burducea, M; Dîrvariu, L; Oprea, E; Lupu, AC; Teliban, GC; Agapie, AL; Stoleru, V; Lobiuc, A, Evaluation of Diet Supplementation with Wheat Grass Juice on Growth Performance, Body Composition and Blood Biochemical Profile of Carp (Cyprinus	667.1
18	Forting ME: Lobins A: Cosover, IM: House M Feet 1, (2021), 10:3030/dill 1032303	0.459
	i ordina, with Lobiut, Α, Cosovaliu, LM, Harja, M, Eπects of In-Situ Filler Loading vs. Conventional Filler and the Use of Retention-	0.597

Anexa 5. Dovada Recunoastere internationala si performanta totala

M

Sursa citari (Scopus,	(SO w	S	S	S	S	S	S	≽	S	S	∞	S	S	
Punctaj realizat		6.674	17.371	11.371	14.069	16.656	156.732	5.35	12	20.785	16.179	8.134	50.348	
Nr. citari		0	9	0	4	7	148	_	~	∞	∞	33	41	
AIS - UEFISCDI		0.382	1.053	1.053	0.867	0.808	929.0	0.05	0	1.255	0.597	0.162	0.764	
e Lucrare	Articole in reviste cotate ISI, ca autor principal	Teliban, GC; Paval, NE; Mihalache, G; Burducea, M; Stoleru, V; Lobiuc , A (2025) Modulated Light Elicitation and Associated Physiological and Molecular Processes in Phenolic Compounds Production in Ocimum basilicum L. Microgreens HORTICULTURAE DOI: 10.3390/horticulturae11010056	Constantinescu-Bercu, A; Lobiuc , A; Caliman-Sturdza, OA; Oita, RC; Iavorschi, M; Paval, NE; Soldanescu, I; Dimian, M; Covasa, M (2024) Long COVID: Molecular Mechanisms and Detection Techniques INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES DOI: 10.3390/ijms25010408	Lobiuc , A; Stoleru, V; Gheorghita, R; Burducea, M (2024) The Effect of Municipal Biosolids on the Growth, Physiology and Synthesis of Phenolic Compounds in Ocimum basilicum L. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES DOI: 10.3390/ijms25010448	Lobiuc , A; Paval, NE; Dimian, M; Covasa, M; Ibrahim, SA (2023) Nanopore Sequencing Assessment of Bacterial Pathogens and Associated Antibiotic Resistance Genes in Environmental Samples MICROORGANISMS DOI: 10.3390/microorganisms11122834	Soldanescu, I; Lobiuc , A; Covasa, M; Dimian, M (2023) Detection of Biological Molecules Using Nanopore Sensing Techniques BIOMEDICINES DOI: 10.3390/biomedicines11061625	Lobiuc, A; Paval, NE; Mangalagiu, II; Gheorghita, R; Teliban, GC; Amariucai-Mantu, D; Stoleru, V (2023) Future Antimicrobials: Natural and Functionalized Phenolics MOLECULES DOI: 10.3390/molecules28031114	Teliban, GC; Paval, NE; Patras, A; Iavorschi, M; Stoleru, V; Lobiuc, A (2023) LIGHT MODULATED PHENOLIC SYNTHESIS IN CHENOPODIUM QUINOA MICROGREENS AS A POTENTIAL BIOTECHNOLOGICAL TOOL SCIENTIFIC STUDY AND RESEARCH-CHEMISTRY AND CHEMICAL ENGINEERING BIOTECHNOLOGY FOOD INDUSTRY DOI:	Lobiuc , A; Sterbuleac, D; Sturdza, O; Dimian, M; Covasa, M (2021) A Conservative Replacement in the Transmembrane Domain of SARS-CoV-2 ORF7a as a Putative Risk Factor in COVID-19 BIOLOGY-BASEL DOI: 10.3390/biology10121276	Lobiuc, A; Dimian, M; Gheorghita, R; Sturdza, OAC; Covasa, M (2021) Introduction and Characteristics of SARS-CoV-2 in North-East of Romania During the First COVID-19 Outbreak FRONTIERS IN MICROBIOLOGY DOI: 10.3389/fmicb.2021.654417	Fortuna, ME; Lobiuc, A; Cosovanu, LM; Harja, M (2020) Effects of In-Situ Filler Loading vs. Conventional Filler and the Use of Retention-Related Additives on Properties of Paper MATERIALS DOI: 10.3390/ma13225066	Morosan, IC; Lobiuc, A; Ivanescu, LC; Olaru, SM; Costica, N; Zamfirache, MM (2020) LUDWIGIA GLANDULOSA (WALTER, 1788) AS A POTENTIAL BIO INDICATOR OF WATER QUALITY CARPATHIAN JOURNAL OF EARTH AND ENVIRONMENTAL SCIENCES DOI: 10.26471/ciees/2020/015/137	Vochita, G; Oprica, L; Gherghel, D; Mihai, CT; Boukherroub, R; Lobiuc, A (2019) Graphene oxide effects in early ontogenetic stages of Triticum aestivum L. seedlings ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY DOI: 10.1016/j.ecoenv.2019.06.026	
Categorie cf Ordin MEN	-													

7.833 S	4 S	6.364 W	24.846 S	22.364 W		6.337 W		607.544
m	0	2	14	18	184	_	m	9
0.119		0.052	0.978	0.052	0.631	0.191	0.102	Total
Dabija, A; Ardelean, M; Poroch-Seritan, M; Oroian, MA; Buculei, A; Rebenciuc, I; Marti, DT; Lobiuc, A (2019) EFFECT OF ROSEMARY, CLOVE AND OREGANO OIL ON THE PRESERVATION OF VACUUM-PACKAGED HOT SMOKED TROUT FARMACIA DOI: 10.31925/farmacia.2019.5.7	Microbiota in Type-2 Diabetes 2019 E-HEALTH AND BIOENGINEERING CONFERENCE (EHB) DOI: 10.1109/ehb47216.2019.8970063	Ciornea, ET; Grosu, E; Bucur, DE; Lobiuc, A (2018) Biochemical and Physiological Effects of Some Organic and Inorganic Chemical Agents in Capsicum spp. REVISTA DE CHIMIE DOI:	nacromolecular modifications in Triticum aestivum L. plantlets under different cultivation conditions PLOS ONE DOI: 10.1371/journal.pone.0202441	Lobiue, A; Olaru, S; Hancu, El; Costica, N; Fortuna, ME; Zamfirache, MM; Constantinescu, G (2018) Toxicity and removal of Direct Red 28 diazo dye in living polymeric systems REVISTA DE CHIMIE DOI:	Lobiuc , A; Vasilache, V; Pintilie, O; Stoleru, T; Burducea, M; Oroian, M; Zamfirache, MM (2017) Blue and Red LED Illumination Improves Growth and Bioactive Compounds Contents in Acyanic and Cyanic Ocimum basilicum L. Microgreens MOLECULES DOI: 10.3390/molecules22122111	Lobiuc , O; Lobiuc , A (2015) Microstructural investigations of wing scales of three Cupido Schrank (Lepidoptera: Lycaenidae: Polyommatinae) species NORTH-WESTERN JOURNAL OF ZOOLOGY DOI:	Lobiuc, A; Olteanu, Z; Stratu, A; Cojocaru, D; Zamfirache, MM (2014) THE EFFECT OF SOME ANGELICA L. SP HYDROSOLS ON SEED GERMINATION AND INITIAL PLANT GROWTH CARPATHIAN JOURNAL OF EARTH AND ENVIRONMENTAL SCIENCES DOI:	

contributor
Si
ca
ISI,
cotate
reviste
=
Articole

Articole in reviste cotate ISI, ca si contributor	Nr. citari (conform Scopus sau		Punctaj conform F2 (0.7*punctai	Sursa
Gheorghita, R; Sirbu, IO; Lobiue, A; Covasa, M (2024) Sodium Alvinate-Stanch Gazantes E. F. 1	(SOM		initial)	
	0.567		6.2783	S
	1.053 2	0,	9.3597	V.
amin D, Folate, OF MEDICAL	0.263 0	4	4.0887) v
	1.69	2	20.881	
tcu, OC; Buculei, A; Andriesi, A; Dabija, A I Industry: Capsules with Berry Juice for	0.595	9	6.4155	s

16/22

S	S	S	S	S	S	S	S	S	S	S	S	S	S
2.9078	10.1941	24.8864	10.7674	8.6674	14.2429	4.6067	11.3491	9.1756	19.6329	231.8351	12.026	17.6932	3.6918
0	7	25	7	4	12	7	6	9	19	323	8	18	0
0.022	0.509	0.936	0.626	0.626	0.621	0.083	0.459	0.444	0.721	0.599	0.74	0.468	0.182
Popa, LD; Teliban, GC; Buterchi, I; Burducea, M; Isticioaia, SF; Nenciu, F; Leonte, A; Buburuz, AA; Pintilie, AS; Bodale, I; Cojocaru, A; Lobiuc, A; Stoleru, V (2024) PHYSIOLOGICAL, BIOCHEMICAL AND AGROPRODUCTIVE CHARACTERISTICS OF HEMP MICROGREENS IN DIFFERENT GROWING ENVIRONMENTS SCIENTIFIC PAPERS-SERIES A-AGRONOMY DOI:	Ongureanu, E; Fortuna, ME; Topa, D; Lobiuc , A; Ungureanu, OC; Jitareanu, DC (2023) Design of Functional Polymer Systems to Optimize the Filler Retention in Obtaining Cellulosic Substrates with Improved Properties MATERIALS DOI: 10.3390/ma16051904	Hamamah, S; Gheorghita, R; Lobiuc , A; Sirbu, IO; Covasa, M (2022) Fecal microbiota transplantation in non-communicable diseases: Recent advances and protocols FRONTIERS IN MEDICINE DOI: 10.3389/fmed.2022.1060581	Puscaselu, RG; Lobiuc , A; Sirbu, IO; Covasa, M (2022) The Use of Biopolymers as a Natural Matrix for Incorporation of Essential Oils of Medicinal Plants GELS DOI: 10.3390/gels8110756	Puscaselu, RG; Lobiuc , A; Gutt, G (2022) The Future Packaging of the Food Industry: The Development and Characterization of Innovative Biobased Materials with Essential Oils Added GELS DOI: 10.3390/gels8080505	Burducea, M; Lobiuc, A; Dirvariu, L; Oprea, E; Olaru, SM; Teliban, GC; Stoleru, V; Poghirc, VA; Cara, IG; Filip, M; Rusu, M; Zheljazkov, VD; Barbacariu, CA (2022) Assessment of the Fertilization Capacity of the Aquaculture Sediment for Wheat Grass as Sustainable Alternative Use PLANTS-BASEL DOI: 10.3390/plants11050634	INFLUENCES THE SYNTHESIS OF PHENOLIC COMPOUNDS AND THE ANTIOXIDANT ACTIVITY OF BASIL EXTRACTS FOR PHYTOPHARMACOLOGICAL PURPOSES FARMACIA DOI: 10.31925/farmacia.2022.1.16	Barbacariu, CA; Burducea, M; Dîrvariu, L; Oprea, E; Lupu, AC; Teliban, GC; Agapie, AL; Stoleru, V; Lobiuc , A (2021) Evaluation of Diet Supplementation with Wheat Grass Juice on Growth Performance, Body Composition and Blood Biochemical Profile of Carp (Cyprinus carpio L.) ANIMALS DOI: 10.3390/ani11092589	Two Halophilic Crude Extracts from Pseudomonas zhaodongensis and Bacillus stratosphericus against Memory Deficits and Anxiety- and Depression-Like Behaviors in Methionine-Induced Schizophrenia in Mice Focusing on Oxidative Stress Status EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE DOI: 10.1155/2020/8852418	Aelenei, P; Rimbu, CM; Horhogea, CE; Lobiuc , A; Neagu, AN; Dunca, SI; Motrescu, I; Dimitriu, G; Aprotosoaie, AC; Miron, A (2020) Prenylated phenolics as promising candidates for combination antibacterial therapy: Morusin and kuwanon G SAUDI PHARMACEUTICAL JOURNAL DOI: 10.1016/j.jsps.2020.08.006	Puscaselu, RG; Lobiuc, A; Dimian, M; Covasa, M (2020) Alginate: From Food Industry to Biomedical Applications and Management of Metabolic Disorders POLYMERS DOI: 10.3390/polym12102417	Petraru, OM; Groza, VM; Lobiuc , A; Bejenaru, L; Popovici, M (2020) Dental microwear as a diet indicator in the seventeenth-century human population from Iasi City, Romania ARCHAEOLOGICAL AND ANTHROPOLOGICAL SCIENCES DOI: 10.1007/s12520-020-01159-2	leliban, GC; Stoleru, V; Burducea, M; Lobiuc , A; Munteanu, N; Popa, LD; Caruso, G (2020) Biochemical, Physiological and Yield Characteristics of Red Basil as Affected by Cultivar and Fertilization AGRICULTURE-BASEL DOI: 10.3390/agriculture10020048	Almeida, J; Fortuna, ME; Pricop, L; Lobiuc , A; Leite, A; Silva, AMN; Monteiro, RP; Rangel, M; Harabagiu, V; Silva, AMG (2019) (Aminophenyl)porphyrins as precursors for the synthesis of porphyrin-modified siloxanes JOURNAL OF PORPHYRINS AND PHTHALOCYANINES DOI: 10.1142/S1088424619500573

Burducea, M.; Lobiuc, A.; Asandulesa, M.; Zaltariov, MF; Burducea, I; Popescu, SM; Zheljazkov, VD (2019) Effects of Sewage Sludge Amendments on the Growth and Physiology of Sweet Basil AGRONOMY-BASEL DOI: 10.3390/agronomy9090548	0	22	18.2	S
	0.467	22	20.4883	S
for bone tissue 1.0106/j.ijbiomac.201	0.695	72	56.6055	S
Fertilization modifies the essential oil and physiology of basil varieties INDUSTRIAL CROPS AND PRODUCTS DOI: 10.1016/j.indcrop.2018.05.021	0.701	43	36.3349	S
Onofrei, V; Benchennouf, A; Jancheva, M; Loupassaki, S; Ouaret, W; Burducea, M; Lobiuc , A; Teliban, GC; Robu, T (2018) Ecological foliar fertilization effects on essential oil composition of sweet basil (Ocimum basilicum L.) cultivated in a field system SCIENTIA HORTICULTURAE DOI: 10.1016/j.scienta.2018.05.021	0.435	91	16.1315	S
Onofrei, V.; Teliban, GC; Burducea, M; Lobiuc, A; Sandu, CB; Tocai, M; Robu, T (2017) Organic foliar fertilization increases polyphenol content of Calendula officinalis L. INDUSTRIAL CROPS AND PRODUCTS DOI: 10.1016/j.inderop.2017.08.055	0.698	23	22.3202	S
Ardelean, M; Cachita-Cosma, D; Ardelean, A; Ladasiu, FC; Lobiuc , A; Zamfirache, MM; Rosenhech, E (2017) Cytological aspects and anthocyanin accumulation observed in Sedum telephium ssp maximum L. callus ROMANIAN BIOTECHNOLOGICAL LETTERS DOI:	0.065	-	3.8185	\Rightarrow
Boz, I; Lobiuc, A; Tanase, C (2017) CHEMICAL COMPOSITION OF ESSENTIAL OILS AND SECRETORY HAIRS OF THYMUS DACICUS BORBAS RELATED TO HARVESTING TIME CELLULOSE CHEMISTRY AND TECHNOLOGY DOI:	0.151	-	4.2399	\Rightarrow
Burducea, M; Lobiuc, A; Costica, N; Zamfirache, MM (2016) THE INFLUENCE OF PRECEDING PLANT CULTIVATION ON GROWTH AND PHYSIOLOGY OF AN OCIMUM BASILICUM L. CULTIVAR SCIENTIFIC PAPERS-SERIES B-HORTICULTURE DOI:	0	2	4.2	≽
	Total		611.0384	
Articole in reviste cotate BDI, ca si autor principal	Punctaj initial		Punctaj (1*punctaj	unctaj
Lobiuc A., Damian C., Naela C., Leahu A. (2017) Morphological And Biochemical Parameters In Chemically Elicited Rye Sprouts, Studia Universitatis Vasile Goldis Seria Stiintele Vietii (Life Sciences Series), 27(3):157-1	-		-	
Lobiuc, A.; Boz, I.; Stratu, A.; Zamfirache, MM. (2017) Preliminary Aspects On The Phytotoxicity Of Some Thymus Spp. Aqueous Extracts, Analele Stiintifice Ale Universitatii Alexandru Ioan Cuza Din Iasi. Sectiunea II A, Genetica Si Biologie Moleculara.	-		-	
Stratu A., Lobiuc A. (2015) The Influence Of Lead On Seed Germination And Seedlings Growth Of Ocimum Basilicum L. And Salvia Coccinea Buchoz Ex Etl. Species, Analele Stiintifice ale Universitatii "Al. I. Cuza" din Iasi: Biologie Vegetala, Serie Noua. Sectiunea II A; Iasi 1/2 : 39-47	-		-	

_	-	-	-	-	-	-	_	-	-	8.	16	Punctaj (0.7*punctaj initial)
-	-	-	-	_	_	1	-	-	-	3	Total	Punctaj initial
Stratu A., Olteanu Z., Lobiuc A. (2015) <i>Effect of Aqueous Extracts from Weed Species on Germination and Initial Growth in Raphanus sativus L.</i> , Not Sci Biol, 7(4):464-470	Lobiuc A., Cuibari R., Frunzete M., Costica N., Burducea M., Ardelean M., Zamfirache MM. (2016) The Effects of Taxus Baccata L. Aqueous Extracts on Germination, Seedling Growth and Physiological Parameters of Test Species, Journal of Horticulture, Forestry and Biotechnology 20(2):118-125	Lobiuc Andrei, Ștefan Marius (2009) Cellulolytic microorganisms isolation from different natural habitats – Analele Științifice ale Universității "Al. I. Cuza" Iași, secțiunea II.a. Genetică și Biologie Moleculară, X(1) :60-65	Lobiuc Andrei, Olteanu Zenovia, Mihāşan Marius (2010) <i>Studies regarding cellulolytic enzymes production by bacterial strains isolated from natural environments, grown on liquid media with raw and pretreated sawdust –</i> Analele Ştiinţifice ale Universităţii "Alexandru Ioan Cuza", Secțiunea Genetică și Biologie Moleculară, XI - 25, 22	Lobiuc Andrei, Zamfirache Maria-Magdalena, Ivănescu Lăcrămioara (2012) <i>Comparative anatomical investigations on some species of the genus Angelica L.</i> – Contribuții Botanice, XLVII, 67-72	Lobiuc Andrei, Zamfirache Maria-Magdalena, Stratu Anişoara (2012) Physiological aspects in two Angelica L. taxa (Apiaceae), Analele Științifice ale Universității "Al. I. Cuza" Iași s. II a. Biologie vegetală, 58(2) :81-87	Lobiuc Odette, Lobiuc Andrei (2013) Micromorphological (SEM) aspects of wing scales of some Polyommatinae (Lepidoptera: Lycaenidae) taxa, Analele Științifice ale Universității "Alexandru Ioan Cuza" Iași, Secțiunea I, Biologie animală, LIX :35-40	Stratu Anişoara, Codiță Rafaela, Costică Naela, Lobiuc Andrei (2014) <i>The influence of zinc on seed germination and seedlings growth of Salvia coccinea Buchoz ex Ell.</i> , Analele Științifice ale Universității "Al. I. Cuza" lași s. II a. Biologie vegetală, 60, 1: 52-59	Liliana, L. U. C. A., OROIAN, M., & LOBIUC, A. (2019). THE PREBIOTIC POTENTIAL OF SOME CARBOHYDRATE SUBSTRATES ON THE GROWTH OF Lactobacillus plantarum AND Lactobacillus rhamnosus. Food and Environment Safety Journal, 18(2).	Burducea, M., Lobiuc , A., Onofrei, V., Olteanu, Z., Ardelean, M., Zagnat, M., & Zamfirache, M. M. (2016). Preliminary phytochemical investigations of two new Romanian Ocimum basilicum L. cultivars. <i>Analele Stiintifice ale Universitatii" Al. I. Cuza" din Iasi, 62</i> (1), 1	Burducea M., Lobiuc A., Costica N., Zamfirache MM. (2016) The Influence Of Preceding Plant Cultivation On Growth And Physiology Of An Ocimum Basilicum L. Cultivar, Scientific Papers. Series B, Horticulture, 60:225-232		Articole in reviste cotate BDI, ca si contribuitor
4	3	9	7	∞	6	10	Ξ	12	13	14		4

=

0.7	4.8				6.083	1218.58
-	Total	Punctaj	2.75	3.33	Total	Total criteriile 1-2
ARDELEAN, M., LOBIUC, A., BURDUCEA, M., MIHALI, C., & MARȚI, D. T. (2019). STUDY OF HEAVY METALS EFFECTS ON IN VITRO CULTURES OF SEDUM TELEPHIUM SSP. MAXIMUM L. Food and Environment Safety Journal, 18(1).		Carti sau capitole in carti	1. Toma, A, Lobiuc , A, Strungaru, SA, Toma, O (2010) Role of Media Communication in Preventing Natural Disasters in Romania, Nato Science for Peace and Security Series E-Human and Societal Dynamics 80:22-28.	 Lobluc, A. Toma, A. Toma, O (2010) Opportunities for using World Wide Web Platforms as Knowledge- Transfer Systems in the Disaster Management Process, Nato Science for Peace and Security Series E-Human and Societal Dynamics 80:62-69. 		

Ξ

1249.06

Total criteriile 1-15